

Mount Monger Gold Project, WA. Acquisition

HIGHLIGHTS

- 100% interest acquired (through pegging) in a 26.6 km² landholding in the Mount Monger gold field, this permit was recently granted.
- A potential palaeochannel target has been identified from historic drilling which includes an intercept of **9m @ 2.3g/t Au from 19m to end of hole**.
- 5km of untested and undercover BIF-hosted gold mineralisation targets along a strongly mineralised trend that includes the Cockeyed Bob, Rumbles, Maxwells, and Santa open pit gold mines.
- 10km by haul road from the currently operating 1.5Mtpa Randalls gold treatment plant.
- Maiden drilling program planned for first quarter of 2016.

1.0 Introduction

Phosphate Australia (POZ) is pleased to announce the acquisition of the Company's Mount Monger gold project, located in the Bulong district of the East Coolgardie mineral field, Western Australia. POZ acquired the project at minimal cost through pegging, the Company owns 100% of the project with no private royalties or encumbrances.

The Mount Monger project is 43km east of Kambalda and approximately 70km by road from Kalgoorlie (Figure 1). The project consists of tenement E25/525 (26.6km²) which was recently granted.

The project is adjacent to excellent infrastructure. It is 8km east from the currently operating 1.2Mtpa Randalls gold mill and 4.2km west of the Maxwells open pit presently being mined. Access is via the all-weather Mt Monger Road.

A review of the historic drilling data has identified a palaeochannel and a lode gold target at the Kiaki Soaks Prospect in the eastern tenement area. The western tenement area contains the Emu Prospect, seven strike kilometres of largely undercover BIF which is prospective for gold. To the north along strike, this same BIF unit hosts the Cockeyed Bob, Rumbles, Maxwells and Santa open pit gold mines (not POZ).

POZ aims to commence the drill testing of these targets in the first quarter of 2016.

Figure 1 location plan and regional geology

2.0 Historic Drilling

January – March 1998

E25/88: The Mount Monger Gold Project conducted a 192 hole, 4,344m RAB drilling program to test two NNE-trending soil geochemical anomalies (WAMEX report A56424). Drilling intersected the contact between a fine grained chloritic basalt to the west and a siltstone/mudstone assemblage to the east. A black carbonaceous unit was encountered along the contact in some drillholes.

This drilling identified the Kiaki Soaks lode gold target.

December 1999

E25/88: Solomon (Australia) Pty Ltd drilled three RC holes for a total of 286m to test the down dip projection of mineralisation intersected in RAB drilling (WAMEX report A60936). It was concluded that mineralisation intersected to date occurred in flat-lying discontinuous lenses dipping conformably to the east within a highly chloritised carbonated mafic with minor pyrite, and that mineralisation on this prospect may lie on a splay structure off the regional Bare Hill Shear zone.

2001-2002

E25/88: AurionGold completed 12 RC drillholes for 1050m and 1 diamond drillhole for 69m (WAMEX report A65396), including KIRC007 (40m @ 2.5g/t Au from 32m). AurionGold made no comments on RC or DDH drilling ranking or prospectivity.

2004-2005

E25/297: Integra Mining Limited completed 38 RAB holes for a total of 776m on ground previously covered by E25/88. These holes targeted BIF-hosted Maxwells-style gold mineralisation, which POZ has named the Emu Prospect. Although no anomalous results were recorded, POZ notes that this drilling only covered a very limited area and was in places quite shallow (~10m). There remains considerable potential for a discovery within the target areas defined on Figure 1.

3.0 Drill Targets

3.1 Kiaki Soaks lode gold

Previous RAB Drilling outlined a 2.5km mineralisation trend along the Bare Hill Shear Zone, open to the north. The mineralisation appears to be hosted within a carbonaceous shale, proximal to the sheared contact between Archaean basalts and sediments. (**Figs. 2, 3 and 4**).

Notable intersections in the Kiaki Soaks lode gold target include:

- 40m @ 2.5g/t Au from 32m (probably drilled down dip on the mineralising structure).
- 5m @ 1.7g/t Au from 23m
- 5m @ 1.6g/t Au from 33m to EOH

Figure 3 is a cross section along line A . Aqthrough the Kiaki Soaks target showing the mineralised intercepts.

3.2 Kiaki Soaks Prospect, Palaeochannel Target

Historic drilling delineated mineralisation which POZ has re-interpreted as a potential gold bearing palaeochannel. This target includes an intersection of 9m @ 2.3g/t Au from 19m to end of hole (Figure 4). The bottom 1m interval in this hole returned 1.95g/t Au and is open at depth.

Figure 2 Kiaki Soaks lode gold and palaeochannel targets with historic drill collars

phosphateaustralia

3.3 BIF Hosted Targets

POZ¢ Emu Prospect is a continuation of the BIF units hosting the Cockeyed Bob, Rumbles, Maxwells and Santa open pit mines (Figure 1). POZ is targeting under cover mineralised extensions to this very prospective BIF which have not been previously drill tested or have only been tested to very shallow depths.

4.0 Local Geology and Mineralisation

The project area is underlain to the east by mafic-ultramafic rocks comprising the Bulong Anticline of the Norseman-Wiluna greenstone belt, and to the west by the Mt Belches Beds, an Archaean sequence of siltstones, sandstones, greywackes and banded iron formations (BIFs). The Mt Belches Beds and Bulong Anticline are separated by the major north-south trending Bare Hill Shear, which passes through and is the interpreted source of mineralisation at the Kiaki Soaks Prospect and possibly the palaeochannel target. Known mineralisation within the Bulong Anticline at Mt Monger is found in most units with shearing and lithological contacts being an important feature, as at the BHS target.

Economic mineralisation in the Mt Belches Beds is primarily restricted to the BIF units. Gold is hosted by magnetite-grunerite rich BIF, often proximal to shallowly southwesterly-dipping quartz veins, where sulphur-bearing hydrothermal fluids desulphidate in the brittle, more permeable BIF units.

The tight chevron folding of the pattern of BIFs in the Mt Belches Beds is the most obvious structural feature of the area. The Santa resources are in the most northeasterly antiformal structure and the Maxwells and Rumbles deposits are in the central antiformal structure area. In the vicinity of the Bare Hill Shear zone these northwesterly-oriented and northeasterly-dipping overturned tight folds changes to north-oriented and east-dipping overturned isoclinal folds.

The interpreted regional deformation sequence consists of early and dominantly layerparallel contractional faulting (D1) followed by two progressive stages of regional shortening (D2 and D3) which produced northwest-trending folds and widely-spaced transcurrent faults. A final deformational event (D4) produced north-striking generally dextral faults oblique to the earlier fold trends.

5.0 Comment on Historic Data

During POZ^s review of historic assay data a potential analytical error became apparent in some 1m split RAB drillhole assays in WAMEX report A56424.

Hole ID	From	То	Au1	Au2	Au3	Au_Avg	Difference, ppm
	m	m	g/t	g/t	g/t	(Au1 and Au2)	(Au_Avg and Au3)
KSR138	20	21	<0.01		0.04	0.01	+0.03
KSR138	21	22	<0.01		0.04	0.01	+0.03
KSR138	22	23	0.37	0.31	1.02	0.34	+0.68
KSR138	23	24	<0.01	<0.01	0.62	0.01	+0.61
KSR138	24	25	0.31	0.34	1.9	0.33	+1.58
KSR138	25	26	0.06	0.04	1.04	0.05	+0.99
KSR138	26	27	0.07	0.09	1.25	0.08	+1.17
KSR138	27	28	<0.01		0.74	0.01	+0.73
KSR138	28	29	1.35		1.55	1.35	+0.20
KSR138	29	30	0.18	0.2	0.5	0.19	+0.31
KSR138	30	31	0.17	0.32	not analysed	0.25	not analysed
KSR138	31	32	0.11	0.15	not analysed	0.13	not analysed
KSR138	32	33	0.22	0.43	not analysed	0.33	not analysed

Table 1 Variable Au Assays in Drillhole KSR138

All Au analyses conducted at Genalysis Perth by aqua regia digest and graphite furnace AAS. Company job number J980933

Au1 and Au2 were initial gold analyses (Au2 being the check assay). Subsequent to this Au3 was assayed and returned significantly higher values to Au1 and Au2. All three assays (Au1, Au2 and Au3) appear to have been performed on the same sample pulp. The disparity between Au1 and Au2, and Au3, is not discussed in the Mt Monger Gold report.

The conclusion by POZ is that hole KSR 138 needs to re-drilled as the original hole has not tested the target due to unreliable assay results.

6.0 Summary

The Mount Monger Gold Project is an excellent addition to the Company's project portfolio because:

- 1. The project is situated within a well endowed gold belt.
- 2. The drilling targets are proximal (10km) to an operating gold treatment plant.
- 3. Acquisition costs were minimal and consisting only of pegging charges and rents.
- 4. The project is 100% POZ and carries no private royalties.

For a very modest outlay, this project provides an excellent opportunity for the Company to gain 100% exposure to a potential new gold discovery.

The Company aims to commence drill testing of this project in the first quarter of 2016.

Jim Richards Executive Chairman

Enquiries To: Mr Jim Richards +61 8 9422 9555

References

Annual Report for the year 1 May 1997 to 30 April 1998, Combined Annual Technical Report GSWA No. M2738/01. D. Pottinger, General Gold Resources NL and Ramsgate Resources NL, November 1998. WAMEX report A56424

Annual Report for the year 1 May 1999 to 30 April 2000. Combined Technical Report C27/1994. J. Ingram, Solomon (Australia) Pty Ltd, July 2000. WAMEX report A60936

Annual Report 01/05/2001 . 30/04/2002, C109/2001, Greater Randalls Project. A. Martin and K. Jenkins, AurionGold, July 2002. WAMEX report A65396

Annual Technical Report. Exploration completed on the Cowarna JV Tenements for the Period 1st October 2004 to 30th September 2005, Combined Report C137/2005. B. Clayton, Integra Mining Limited. WAMEX report A71419.

Annual General Meeting, Perth 20 November 2014. Silver Lake Resources, retrieved from http://clients.weblink.com.au/news/pdf2/01576155.pdf

Appendix 4D Half Year Report for the Period Ended 31 December 2014. Silver Lake Resources, retrieved from <u>http://clients.weblink.com.au/news/pdf2/01593113.pdf</u>

The information in this report that relates to previously reported exploration results is based on information compiled by Mr. Jim Richards who is a Member of The Australasian Institute of Mining and Metallurgy and a Member of the Australian Institute of Geoscientists. Mr. Richards is a Director of Phosphate Australia. Mr. Richards has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Richards consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

	nonnauc							
Anumber	HoleID	mE_MGA94	mN_MGA94	mRL_nominal	HoleType	MaxDepth	Dip	Azi
56424	KSR11	417437	6553757	300	RAB	12	-60	270
56424	KSR12	417487	6553757	300	RAB	14	-60	270
56424	KSR13	417537	6553757	300	RAB	15	-60	270
56424	KSR16	417387	6553957	300	RAB	18	-60	270
56424	KSR17	417437	6553957	300	RAB	10	-60	270
56424	KSR26	417387	6554557	300	RAB	17	-60	270
56424	KSR27	417437	6554557	300	RAB	18	-60	270
56424	KSR28	417487	6554557	300	RAB	28	-60	270
56424	KSR29	417537	6554557	300	RAB	35	-60	270
56424	KSR30	417587	6554557	300	RAB	37	-60	270
56424	KSR43	417387	6554957	300	RAB	25	-60	270
56424	KSR44	417437	6554957	300	RAB	21	-60	270
56424	KSR45	417487	6554957	300	RAB	28	-60	270
56424	KSR46	417537	6554957	300	RAB	28	-60	270

Appendix A Drillhole Information

Anumber	HoleID	mE_MGA94	mN_MGA94	mRL_nominal	HoleType	MaxDepth	Dip	Azi
56424	KSR55	417387	6555157	300	RAB	12	-60	270
56424	KSR56	417437	6555157	300	RAB	24	-60	270
56424	KSR57	417487	6555157	300	RAB	20	-60	270
56424	KSR58	417537	6555157	300	RAB	27	-60	270
56424	KSR59	417587	6555157	300	RAB	32	-60	270
56424	KSR60	417637	6555157	300	RAB	46	-60	270
56424	KSR61	417387	6555357	300	RAB	20	-60	270
56424	KSR62	417437	6555357	300	RAB	42	-60	270
56424	KSR63	417487	6555357	300	RAB	42	-60	270
56424	KSR64	417537	6555357	300	RAB	25	-60	270
56424	KSR65	417587	6555357	300	RAB	22	-60	270
56424	KSR66	417637	6555357	300	RAB	45	-60	270
56424	KSR67	417687	6555357	300	RAB	48	-60	270
56424	KSR68	417737	6555357	300	RAB	38	-60	270
56424	KSR72	417387	6556357	300	RAB	22	-60	270
56424	KSR73	417437	6556357	300	RAB	15	-60	270
56424	KSR74	417487	6556357	300	RAB	20	-60	270
56424	KSR75	417537	6556357	300	RAB	28	-60	270
56424	KSR80	417397	6553657	300	RAB	21	-60	270
56424	KSR83	417407	6553757	300	RAB	21	-60	270
56424	KSR84	417417	6553657	300	RAB	36	-60	270
56424	KSR85	417437	6553657	300	RAB	12	-60	270
56424	KSR89	417407	6553857	300	RAB	15	-60	270
56424	KSR90	417427	6553857	300	RAB	16	-60	270
56424	KSR91	417447	6553857	300	RAB	17	-60	270
56424	KSR92	417397	6553957	300	RAB	22	-60	270
56424	KSR93	417417	6553957	300	RAB	22	-60	270
56424	KSR95	417397	6554057	300	RAB	13	-60	270
56424	KSR96	417417	6554057	300	RAB	8	-60	270
56424	KSR97	417437	6554057	300	RAB	18	-60	270
56424	KSR98	417457	6554057	300	RAB	10	-60	270
56424	KSR99	417387	6554157	300	RAB	12	-60	270
56424	KSR100	417407	6554157	300	RAB	9	-60	270
56424	KSR101	417427	6554157	300	RAB	10	-60	270
56424	KSR102	417447	6554157	300	RAB	13	-60	270
56424	KSR103	417467	6554157	300	RAB	13	-60	270
56424	KSR104	417397	6554257	300	RAB	9	-60	270
56424	KSR105	417417	6554257	300	RAB	18	-60	270
56424	KSR106	417437	6554257	300	RAB	17	-60	270
56424	KSR107	417457	6554257	300	RAB	21	-60	270
56424	KSR108	417477	6554257	300	RAB	18	-60	270
56424	KSR109	417407	6554357	300	RAB	10	-60	270
56424	KSR110	417427	6554357	300	RAB	15	-60	270
56424	KSR111	417447	6554357	300	RAB	19	-60	270
56424	KSR112	417467	6554357	300	RAB	13	-60	270
56424	KSR113	417487	6554357	300	RAB	33	-60	270
56424	KSR114	417417	6554457	300	RAB	11	-60	270

Anumber	HoleID	mE_MGA94	mN_MGA94	mRL_nominal	HoleType	MaxDepth	Dip	Azi
56424	KSR115	417437	6554457	300	RAB	18	-60	270
56424	KSR116	417457	6554457	300	RAB	23	-60	270
56424	KSR117	417477	6554457	300	RAB	26	-60	270
56424	KSR118	417497	6554457	300	RAB	33	-60	270
56424	KSR119	417447	6554557	300	RAB	24	-60	270
56424	KSR120	417467	6554557	300	RAB	30	-60	270
56424	KSR121	417507	6554557	300	RAB	23	-60	270
56424	KSR122	417527	6554557	300	RAB	29	-60	270
56424	KSR123	417547	6554557	300	RAB	41	-60	270
56424	KSR124	417447	6554657	300	RAB	24	-60	270
56424	KSR125	417467	6554657	300	RAB	33	-60	270
56424	KSR126	417487	6554657	300	RAB	36	-60	270
56424	KSR127	417507	6554657	300	RAB	24	-60	270
56424	KSR128	417527	6554657	300	RAB	33	-60	270
56424	KSR129	417457	6554757	300	RAB	51	-60	270
56424	KSR130	417477	6554757	300	RAB	48	-60	270
56424	KSR131	417497	6554757	300	RAB	21	-60	270
56424	KSR132	417517	6554757	300	RAB	48	-60	270
56424	KSR133	417537	6554757	300	RAB	47	-60	270
56424	KSR134	417467	6554857	300	RAB	32	-60	270
56424	KSR135	417487	6554857	300	RAB	37	-60	270
56424	KSR136	417507	6554857	300	RAB	34	-60	270
56424	KSR137	417527	6554857	300	RAB	30	-60	270
56424	KSR138	417547	6554857	300	RAB	33	-60	270
56424	KSR139	417497	6554957	300	RAB	34	-60	270
56424	KSR140	417517	6554957	300	RAB	22	-60	270
56424	KSR141	417557	6554957	300	RAB	17	-60	270
56424	KSR142	417507	6555057	300	RAB	24	-60	270
56424	KSR143	417527	6555057	300	RAB	32	-60	270
56424	KSR144	417547	6555057	300	RAB	23	-60	270
56424	KSR145	417567	6555057	300	RAB	26	-60	270
56424	KSR146	417587	6555057	300	RAB	41	-60	270
56424	KSR147	417467	6555157	300	RAB	18	-60	270
56424	KSR148	417507	6555157	300	RAB	28	-60	270
56424	KSR149	417567	6555157	300	RAB	23	-60	270
56424	KSR150	417607	6555157	300	RAB	39	-60	270
56424	KSR151	417557	6555257	300	RAB	51	-60	270
56424	KSR152	417577	6555257	300	RAB	32	-60	270
56424	KSR153	417597	6555257	300	RAB	29	-60	270
56424	KSR154	417617	6555257	300	RAB	38	-60	270
56424	KSR155	417647	6555257	300	RAB	29	-60	270
56424	KSR156	417617	6555357	300	RAB	45	-60	270
56424	KSR157	417657	6555357	300	RAB	47	-60	270
56424	KSR158	417617	6555457	300	RAB	33	-60	270
56424	KSR159	417637	6555457	300	RAB	44	-60	270
56424	KSR160	417657	6555457	300	RAB	42	-60	270
56424	KSR161	417677	6555457	300	RAB	47	-60	270

Anumber	HoleID	mE_MGA94	mN_MGA94	mRL_nominal	HoleType	MaxDepth	Dip	Azi
56424	KSR162	417697	6555457	300	RAB	39	-60	270
56424	KSR163	417687	6555657	300	RAB	35	-60	270
56424	KSR164	417707	6555657	300	RAB	45	-60	270
56424	KSR165	417727	6555657	300	RAB	45	-60	270
56424	KSR166	417747	6555657	300	RAB	32	-60	270
56424	KSR167	417767	6555657	300	RAB	23	-60	270
56424	KSR168	417817	6555957	300	RAB	33	-60	270
56424	KSR169	417837	6555957	300	RAB	50	-60	270
56424	KSR170	417857	6555957	300	RAB	69	-60	270
56424	KSR171	417877	6555957	300	RAB	30	-60	270
56424	KSR172	417897	6555957	300	RAB	24	-60	270
56424	KSR177	417377	6555957	300	RAB	31	-60	270
56424	KSR178	417397	6555957	300	RAB	23	-60	270
56424	KSR179	417467	6556357	300	RAB	18	-60	270
56424	KSR180	417507	6556357	300	RAB	26	-60	270
56424	KSR181	417527	6556357	300	RAB	29	-60	270
56424	KSR182	417547	6556357	300	RAB	36	-60	270
60936	KRC1	417667	6555257	300	RC	97	-60	270
60936	KRC2	417637	6555257	300	RC	90	-60	270
60936	KRC3	417507	6554557	300	RC	101	-60	270
65396	KIDD001	417556	6554857	300	DDH	69	-59.5	264
65396	KIRC004	417549	6554553	300	RC	108	-60	90
65396	KIRC005	417417	6554553	300	RC	102	-60	90
65396	KIRC006	417563	6554859	300	RC	84	-60	270
65396	KIRC007	417506	6554857	300	RC	114	-60	90
65396	KIRC008	417577	6555247	300	RC	108	-60	90
65396	KIRC012	417549	6554783	300	RC	72	-61	264
65396	KIRC013	417527	6554781	300	RC	54	-59.5	263
65396	KIRC014	417564	6554944	300	RC	54	-57.5	271.5
65396	KIRC015	417605	6554944	300	RC	96	-54	270

Appendix B Historic Drilling Intersections with Assays greater than +0.50 g/t Au

HoleID	From metre	To metre	Au g/t	Project Area	Comments
KIDD001	1.6	4	3.50	Kiaki Soaks	
KIDD001	49	50	1.22	Kiaki Soaks	
KIDD001	50	51	1.54	Kiaki Soaks	
KIDD001	51	52	0.60	Kiaki Soaks	
KIDD001	59	60	0.70	Kiaki Soaks	
KIRC004	17	18	4.71	Kiaki Soaks	
KIRC005	12	13	1.93	Kiaki Soaks	
KIRC006	54	55	1.00	Kiaki Soaks	
KIRC006	55	56	0.87	Kiaki Soaks	
KIRC006	56	57	0.50	Kiaki Soaks	
KIRC006	57	58	0.63	Kiaki Soaks	

HoleID	From metre	To metre	Au g/t	Project Area	Comments
KIRC006	58	59	0.98	Kiaki Soaks	
KIRC006	62	63	0.87	Kiaki Soaks	
KIRC006	64	65	0.87	Kiaki Soaks	
KIRC007	32	33	4.25	Palaeochannel	
KIRC007	33	34	5.64	Palaeochannel	
KIRC007	34	35	3.18	Palaeochannel	
KIRC007	35	36	3.81	Palaeochannel	
KIRC007	36	37	4.31	Kiaki Soaks	
KIRC007	37	38	2.16	Kiaki Soaks	
KIRC007	38	39	5.72	Kiaki Soaks	
KIRC007	39	40	3.26	Kiaki Soaks	
KIRC007	40	41	1.14	Kiaki Soaks	
KIRC007	41	42	0.97	Kiaki Soaks	
KIRC007	42	43	5.56	Kiaki Soaks	
KIRC007	43	44	4.58	Kiaki Soaks	
KIRC007	44	45	3.71	Kiaki Soaks	
KIRC007	45	46	3.03	Kiaki Soaks	
KIRC007	46	47	2.35	Kiaki Soaks	
KIRC007	47	48	0.55	Kiaki Soaks	
KIRC007	48	49	1.12	Kiaki Soaks	
KIRC007	49	50	0.75	Kiaki Soaks	
KIRC007	50	51	3.73	Kiaki Soaks	
KIRC007	51	52	1.22	Kiaki Soaks	
KIRC007	53	54	1.06	Kiaki Soaks	
KIRC007	54	55	1.10	Kiaki Soaks	
KIRC007	56	57	0.78	Kiaki Soaks	
KIRC007	57	58	0.77	Kiaki Soaks	
KIRC007	58	59	1.34	Kiaki Soaks	
KIRC007	59	60	1.91	Kiaki Soaks	
KIRC007	60	61	1.99	Kiaki Soaks	
KIRC007	61	62	3.00	Kiaki Soaks	
KIRC007	62	63	0.72	Kiaki Soaks	
KIRC007	63	64	0.57	Kiaki Soaks	
KIRC007	64	65	1.45	Kiaki Soaks	
KIRC007	65	66	1.60	Kiaki Soaks	
KIRC007	66	67	1.11	Kiaki Soaks	
KIRC007	67	68	1.38	Kiaki Soaks	
KIRC007	68	69	4.40	Kiaki Soaks	
KIRC007	69	70	5.26	Kiaki Soaks	
KIRC007	70	71	6.89	Kiaki Soaks	
KIRC007	71	72	2.49	Kiaki Soaks	
KIRC007	72	73	0.61	Kiaki Soaks	
KIRC007	111	112	0.84	Kiaki Soaks	
KIRC008	33	34	1.01	Kiaki Soaks	
KIRC008	42	43	0.94	Kiaki Soaks	
KIRC008	43	44	0.65	Kiaki Soaks	

HoleID	From metre	To metre	Au g/t	Project Area	Comments
KIRC008	46	47	0.67	Kiaki Soaks	
KIRC008	71	72	0.98	Kiaki Soaks	
KIRC008	99	100	1.10	Kiaki Soaks	
KIRC008	100	101	0.92	Kiaki Soaks	
KIRC008	105	106	0.95	Kiaki Soaks	
KIRC008	106	107	0.67	Kiaki Soaks	
KIRC008	107	108	0.79	Kiaki Soaks	
KIRC013	23	24	1.40	Kiaki Soaks	
KIRC013	24	25	4.80	Kiaki Soaks	
KIRC013	27	28	1.83	Kiaki Soaks	
KIRC013	45	46	0.58	Kiaki Soaks	
KIRC013	47	48	0.86	Kiaki Soaks	
KIRC013	48	49	1.69	Kiaki Soaks	
KIRC013	49	50	0.83	Kiaki Soaks	
KIRC013	50	51	1.64	Kiaki Soaks	
KIRC014	41	42	0.62	Kiaki Soaks	
KIRC014	42	43	2.61	Kiaki Soaks	
KIRC014	43	44	0.80	Kiaki Soaks	
KIRC014	44	45	1.14	Kiaki Soaks	
KIRC015	80	81	0.91	Kiaki Soaks	
KRC1	49	50	1.27	Kiaki Soaks	
KRC1	74	75	3.36	Kiaki Soaks	
KRC1	75	76	1.45	Kiaki Soaks	
KRC1	80	84	0.62	Kiaki Soaks	
KSR28	19	20	2.60	Palaeochannel	
KSR28	20	21	2.35	Palaeochannel	
KSR28	21	22	3.80	Palaeochannel	
KSR28	22	23	2.65	Palaeochannel	
KSR28	23	24	2.15	Palaeochannel	
KSR28	24	25	2.05	Palaeochannel	
KSR28	25	26	1.65	Palaeochannel	
KSR28	26	27	1.75	Palaeochannel	
KSR28	27	28	1.95	Palaeochannel	Mineralised to EOH
KSR45	5	6	0.72	Kiaki Soaks	
KSR46	26	27	4.60	Kiaki Soaks	
KSR57	16	17	0.54	Kiaki Soaks	
KSR74	17	18	0.90	Kiaki Soaks	
KSR75	22	23	0.56	Kiaki Soaks	
KSR89	14	15	0.80	Kiaki Soaks	
KSR93	20	21	0.82	Kiaki Soaks	
KSR97	12	13	0.50	Kiaki Soaks	
KSR105	14	15	1.20	Kiaki Soaks	
KSR117	20	21	1.75	Kiaki Soaks	
KSR117	21	22	1.50	Kiaki Soaks	
KSR117	22	23	0.96	Kiaki Soaks	
KSR119	13	14	0.52	Palaeochannel	

HoleID	From metre	To metre	Au g/t	Project Area	Comments
KSR119	14	15	2.25	Palaeochannel	
KSR119	15	16	0.80	Palaeochannel	
KSR119	16	17	0.58	Palaeochannel	
KSR120	16	17	0.96	Palaeochannel	
KSR120	17	18	1.25	Palaeochannel	
KSR120	18	19	0.70	Palaeochannel	
KSR125	29	30	1.18	Kiaki Soaks	
KSR126	26	27	0.80	Kiaki Soaks	
KSR132	26	27	1.80	Kiaki Soaks	
KSR138	22	23	1.02	Kiaki Soaks	
KSR138	23	24	0.62	Kiaki Soaks	
KSR138	24	25	1.90	Kiaki Soaks	
KSR138	25	26	1.04	Kiaki Soaks	
KSR138	26	27	1.25	Kiaki Soaks	
KSR138	27	28	0.74	Kiaki Soaks	
KSR138	28	29	1.55	Kiaki Soaks	
KSR138	29	30	0.50	Kiaki Soaks	
KSR139	27	28	0.52	Kiaki Soaks	
KSR140	20	21	0.60	Kiaki Soaks	
KSR142	22	23	0.70	Kiaki Soaks	
KSR145	15	16	1.40	Kiaki Soaks	
KSR145	22	23	4.60	Kiaki Soaks	
KSR145	24	25	0.50	Kiaki Soaks	
KSR153	25	26	0.80	Kiaki Soaks	
KSR154	33	34	0.62	Kiaki Soaks	
KSR154	34	35	2.35	Kiaki Soaks	
KSR154	35	36	0.52	Kiaki Soaks	
KSR154	36	37	3.60	Kiaki Soaks	
KSR154	37	38	1.06	Kiaki Soaks	Mineralised to EOH
KSR156	40	41	1.20	Kiaki Soaks	
KSR159	30	31	1.30	Kiaki Soaks	
KSR160	33	34	0.78	Kiaki Soaks	
KSR160	34	35	0.60	Kiaki Soaks	
KSR177	28	29	1.12	Kiaki Soaks	
KSR178	21	22	0.78	Kiaki Soaks	
KSR182	29	30	3.50	Kiaki Soaks	

All samples are 1m intervals, with the exceptions of DDH drillhole KIDD001 2.6 - 4m which was sampled as one 2.6m interval, and KRC1 80 . 84m which was sampled as a 4m composite.

Appendix C JORC Code, 2012 Edition – Table 1

The three drilling programs documented in the following tables are as follows: A56424: 1998, RAB drilling A60936: 1999, RC drilling A65396: 2001, RC and DDH drilling

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling Techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 A56424: RAB. 5m composite trowel samples were collected. When results were received all anomalous composites (>0.25g/t Au) were spilt and assayed as single metre samples. A60936: RC. 4m composite samples were collected and individual 1m samples were collected where the original composite sample returned a gold value of greater than 0.25ppm. A65396: DDH - drill core was cut and sampled selectively according to lithology. BIF units were cut and half core sent for analysis. A65396: RC - all samples were initially taken as two metre spilt composite samples. When results were received all anomalous composites (>0.5g/t Au) were riffle spilt and assayed as single metre samples.

Criteria	JORC Code Explanation	Commentary
Sampling Technique	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where ±industry standardqwork has been done this would be relatively simple (e.g. ±everse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assayq. In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 A56424: RAB drilling was used to produce 1m splits weighing 2-3kg. Samples were sent to Genalysis Kalgoorlie for drying and single-stage mixing and grinding. Sample were then transported to Genalysis Perth where digestion was via aqua regia and analysed by graphite furnace AAS. "Duplicates and usual lab checks" were undertaken A60936: RC drilling produced 72 four metre composite samples. Samples were submitted to Genalysis Kalgoorlie for preparation by single stage mix and grind. Samples were then sent to Perth for aqua-regia digestion with multi-element analyses by graphite furnace AAS. Elements analysed: Au (DL 0.01ppm), As (DL 5ppm), Cu (DL 1ppm), Pb (DL 1ppm), Zn (DL 1ppm), Ni (DL 1ppm). Individual metre samples were assayed for gold by Fire Assay preparation of a 50g prill and AAS finish. A65336: DDH core was selectively cut and sampled. The BIF intervals were cut and the half core was selectively cut and sanyled. The BIF intervals were generally taken as 1m samples, crossing lithologies, unless significant alteration was present, then individual samples were inserted every 20 samples. Standards were alternated between S5 (expected grade 4.99g/t) and S1 (expected grade 4.96g/t). Both S1 and S5 are fresh, sulphide rich produced standard, sourced from Rocklabs A65396: RC. All samples were submitted to ALS Kalgoorlie and assayed for Au (50g Fire Assay) with a detection limit of 0.01ppm and As by XRF (5ppm detection limit). Standards and blank samples were inserted every 20 samples. Standards were alternated between S5 (expected grade 4.99g/t) and B12X (expected 0.1g/t) for the first two programs and S1 (expected grade 4.96g/t) and B12X for the third program. Both S1 and S5 are fresh, sulphide rich produced standard, sourced from Rocklabs. B12X is an oxidised standard produced from blended Basalt. RC composite and single metre splits were duplicated every 24 metres across the three drill programs.

Criteria	JORC Code Explanation	Commentary
Drilling Techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 A56424: RAB drilling undertaken by South Drilling using a modified Edson rig. 4344m of bade and 6m of hammer were drilled. A60936: RC drilling using a Drillcorp RC rig. No further details provided. A65396 DDH and RC: no details are provided.
	Method of recording and assessing core and chip sample recoveries and results assessed	A56424: "Recovery 60% due to sticky clays and water" A60936: recovery % is recorded in logging A65396: no details are provided.
Drill sample Recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples	All drilling predates 2001 and these criteria are not reported.
Recovery	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Not assessed by previous exploration companies
	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Chips and core were geologically logged in detail. Mineral Resource estimations, mining studies and metallurgical studies would not be applicable at this stage of exploration.
Logging	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	 Drill chip and diamond core logging was quantitative in nature. Information collected includes: A56424: colour, oxidation, lithology, grain size, alteration, veining, mineralogy, comments A60936: colour, oxidation, grain size, texture, lithology, alteration, veining, mineralisation type and style, water, sample recovery, comments. A65396: lithology, regolith, colour, oxidation, hardness, shearing, texture, grain size, mineralogy, comments
	The total length and percentage of the relevant intersections logged	All drillholes were logged in full

Criteria	JORC Code Explanation	Commentary
Sub Sampling Techniques and Sample Preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	A56424 and A60936: drilling predates 2000 and these criteria are not reported. A65396: no information is given for 2m composite samples. 1m follow-up samples of anomalous composite samples were riffle split.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 A56424 and A60936: Samples were sent to Genalysis Kalgoorlie for drying and single-stage mixing and grinding. POZ deems this an appropriate technique for the style of mineralisation. A65396: Sample preparation techniques are not described.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	A56424 and A60936: drilling predates 2000 and these criteria are not reported. A65396: sub-sampling of RC chips was conducted using a riffle splitter
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	A56424 and A60936: drilling predates 2000 and these criteria are not reported. A65396: single metre splits were duplicated every 24 metres
	Whether sample sizes are appropriate to the grain size of the material being sampled.	No examples of coarse gold affecting gold assay results have been recognized by POZ in the historic Kiaki Soaks data. As such the drill techniques used in historic drilling are considered appropriate to the grain size of the material being sampled.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 A56424 and A60936: Samples analysed by Genalysis Perth. Sample digestion via aqua regia and sample analysis via graphite furnace B/AAS. This technique is considered total. A60936: individual metre samples were assayed for gold by Fire Assay preparation of a 50g prill and AAS finish. This technique is considered total. A65396 DDH and RC: samples were submitted to ALS Kalgoorlie and assayed for Au (50g Fire Assay) with a detection limit of 0.01ppm and As by XRF (5ppm detection limit). This technique is considered total.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine element concentrations

Criteria	JORC Code Explanation	Commentary
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Standard laboratory QAQC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of the in house procedures. In addition to this: A56424: "Check Assays" is described as "Duplicates and usual lab checks." No further information is provided. A60936: no information is provided. A65396 (RC and DDH): Standards and blank samples were inserted every 20 samples, and single metre splits were duplicated every 24 metres
	The verification of significant intersections by either independent or alternative company personnel.	All drilling predates 2001 and these criteria are not reported.
Verification of	The use of twinned holes.	No twinned holes were drilled
sampling and assaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All data has been extracted from the WAMEX database and from Accession Reports A56424, A60936 and A65396.
	Discuss any adjustment to assay data.	POZ is not aware of any adjustments to the assay data
Location of	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	A56424: drillholes surveyed by DGPS A60936: drillholes surveyed by DGPS A65396: survey method is not specified
	Specification of the grid system used.	Grid system is MGA94_51
	Quality and adequacy of topographic control.	No topographic controls are recorded.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drillhole positions are shown in Figure 2
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not applicable at this stage of exploration
	Whether sample compositing has been applied.	No sample compositing has been applied

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	A potential orientation for in situ mineralisation is given in cross section A-A' (Figure 3) and palaeochannel mineralisation in both cross section A-A' and B-B' (Figures 3 and 4). This suggests unbiased sampling of possible structures
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Any sampling bias due to drillhole orientation is not known at this stage
Sample Security	The measures taken to ensure sample security.	All drilling predates 2001 and these criteria are not reported.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	At this early stage of exploration, no review of the sampling techniques and data has been initiated or is possible for the historic drilling data

Section 2 Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Exploration Licence E25/525 is 100% held by Phosphate Australia with no encumbrances. There is no Native Title claim over the tenement area. Approximately 2.2km ² of the northern end of the tenement lies within the Randell Timber Reserve.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is under application with no known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	See Section 2.0
Geology	Deposit type, geological setting and style of mineralisation.	See Section 4.0

Criteria	JORC Code Explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level . elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length.	See: Appendix A (easting, northing, elevation, dip, azimuth, hole length Appendix B (down hole length and interception depth)
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Where present, multiple gold assays for individual samples were averaged to give a single useable gold value for that interval. Once the above was done, the gold values used Figures 2, 3 and 4 and Appendix 2 were calculated as simple averages for all gold values over the reported intervals, as all sampling was conducted in 1 metre intervals. The single exception to this is DDH drillhole KIDD001 2.6-4m, which was sampled as a single 2.6m interval.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Not Applicable
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not Applicable
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. ±down hole length, true width not known).	A potential orientation for in situ mineralisation is given in cross section A-A' (Figure 3) and palaeochannel mineralisation in both cross section A-A' and B-B' (Figures 3 and 4). The mineralised widths given in Figure 2 and Appendix B, with the exception of drillhole KIRC007, are believed to be close to true width. However the mineralised intervals reported are down hole lengths and true widths are not known.

Criteria	JORC Code Explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures 1 - 4 and Appendices A - B in body of text
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Appendix 2 tabulates all Exploration Results for all drillholes listed in this Report
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples . size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other substantive exploration data is known.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	 Section 3.0 in the body of text documents currently planned drilling, including: the Kiaki Soaks lode gold target the palaeochannel gold target the BIF-hosted lode gold targets These targets are shown in Figures 1 and 2