

Phase 4 Drilling Discovers New Shallow Gold Lodes at Edjudina, WA

• Phase 4 aircore drilling at the Edjudina Gold Project, WA was highly successful in discovering further shallow mineralisation at a number of prospects and delineating areas for further drilling

Hole ID	Interval (m)	Au (g/t)	From (m)	Prospect
GAC231	18	1.63	21	Neta
GAC283	2	11.83 22 Per		Perseverance
GAC269	12	2.42	12	Gawler
GAC341	4	2.30	22	Gawler
GAC346	5	1.92	8	Gawler
GAC225	5	1.80	1	Neta
GAC237	27	0.73	15	Neta
GAC351	7	1.04	15	Gawler

• Phase 4 drill intersections include (in grams per tonne Au):

Plus numerous other mineralised intersections (Appendix A)

- At the Neta Prospect, mineralised extensions to the high-grade core have been discovered; includes 18m @ 1.63g/t from 21m
- At the eastern edge of Neta, a new, wide area with twin zones of mineralisation has been discovered, named the 'Morphy Lode'; includes 27m @ 0.73 g/t from 15m
- Discovery of a high grade quartz vein at the Perseverance Project; includes 2m @ 11.83 g/t from 22m
- Follow-up work to include pegging a Mining Lease over the Neta Prospect; further metallurgical testwork at Neta; mapping of old workings and acquiring remote sensing data to generate new drill targets; aircore drilling new targets including those under alluvial cover and further RC drilling at Neta
- The Company is in an excellent financial position to execute these ongoing work programs at Edjudina with \$3.03 million cash on hand as of 31 March 2021

GIB Exploration Manager Michael Denny during the Phase 4 RC Drilling of the Neta Lodes Prospect at the Edjudina Gold Project

1.0 Edjudina Gold Project

GIB 100%

Gibb River Diamonds Limited ('GIB' or the 'Company') is pleased to announce results from the highly successful Phase 4 aircore drilling program at the Edjudina Gold Project (GIB 100%). This program took place from 20 to 30 May 2021. A total of 137 holes were drilled for 4,474 metres. There were no accidents or lost time incidents.

A total of 1,346 samples were assayed as either one metre splits (674 samples) or as composite samples (672 samples), mainly 6 metre composites. Blank, duplicate, standard and repeat samples were added as necessary to ensure data integrity for future resource calculations. Assay turnaround time for this Phase 4 campaign was slower than for previous campaigns, which has led to a longer lead time in reporting.

Due to the shallow and high grade nature of the mineralisation at Edjudina, the exploration methods being used are extremely cost-effective. Importantly, Edjudina's location, excellent logistics and proximity to an active haul road (to Northern Star's Carosue Dam mill) all add to the potential for the development of any discoveries at the project.

Page 3 of 23

2.0 Phase 4 Aircore Drilling Results

The Phase 4 Aircore drilling program was highly successful in discovering further shallow mineralisation at a number of prospects and delineating areas for further drilling:

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Prospect	Lode	Comment
GAC225	1	6	5	1.80	Neta	Carlsen	fe alt phyllite; minor qz vn
GAC225	19	22	3	0.59	Neta	unassigned	fe alt phyllite
GAC231	21	39	18	1.63	Neta	Carlsen	Ser-fe altn; Hole ends at 39m in 0.74g/t
GAC232	0	3	3	0.99	Neta	Calcrete	Calcrete
GAC232	7	15	8	0.56	Neta	Kasparov	qz vn; arg-ser phyllite
GAC232	25	30	5	0.46	Neta	Kasparov	qz vn; arg-ser phyllite
GAC233	0	7	7	0.45	Neta	Calcrete	Calcrete & qz vn
GAC234	0	3	3	0.66	Neta	Morphy	Calcrete
GAC235	0	3	3	1.00	Neta	Morphy	Calcrete
GAC236	0	2	2	0.89	Neta	Morphy	Calcrete
GAC237	15	42	27	0.73	Neta	Morphy	Composites; EOH comp is 6m @ 1.27g/t
GAC238	9	21	12	0.53	Neta	Morphy	EOH composite is mineralised
GAC249	10	13	3	0.67	Neta	Staunton	qz vn
GAC257	24	35	11	0.54	Neta	Staunton	Strong to intense fe altn; 1m samples
GAC265	6	24	18	0.43	Neta	Staunton	6m composites
GAC269	12	24	12	2.42	Gawler	unassigned	6m composites
GAC270	0	6	6	0.54	Gawler	unassigned	6m composite
GAC282	7.8	8.0	0.2	6.39	Perseverance	Perseverance	6.2 - 7.8m is a mining void
GAC283	22	24	2	11.83	Perseverance	Perseverance	qz vn; includes 1m @ 20.37g/t
GAC298	6	11	5	0.57	Triumph	unassigned	Composite and splits
GAC341	22	26	4	2.30	Gawler	unassigned	4m composite; ser-fe altn phyllite
GAC346	8	13	5	1.92	Gawler	unassigned	Includes 1m @ 7.30g/t from 8m
GAC351	15	22	7	1.04	Gawler	unassigned	Includes 1m @ 3.95g/t from 17m
GAC353	0	12	12	0.48	Gawler	unassigned	6m composites
GAC354	27	42	14.2	0.72	Gawler	unassigned	Comps; void 33.2-34.0m
GAC357	34	42	8	0.92	Gawler	unassigned	4m composites; EOH sample m/l
GAC358	30	34	4	0.80	Gawler	unassigned	4m composite

Table 1: Phase 4 Drilling Results Highlights

Intervals are reported as drilled and are not reported as true widths. Results are uncut All holes were drilled at -60 degrees, depths are downhole depths

Appendix A contains a set of drilling results for every hole which includes further significant results. Qualifiers for this table are in Appendix A

Detailed geology of the Neta Lodes Prospect is in the GIB ASX release dated 8 October 2020³

The following plans and figures include updated mineralisation profiles using recently collected one metre splits assays from previously anomalous composite samples assayed during the Phase 3 drilling program. These updates are useful for modelling, but are not considered material.

2.1 Neta Prospect

The Neta Gold Prospect is an exciting discovery which displays mineralisation from surface, with grades, geometry and location which indicate potential for bulk open pit mining. The Phase 4 drilling campaign has proved lode extensions to the high-grade core at Neta and also discovered an important new area of mineralisation which has been named the 'Morphy Lode'.

Figure 3: Neta Prospect Plan View – Drilling Phase 4 Results

The Phase 4 drilling has successfully demonstrated the following:

- Previous GIB drilling of the Carlsen Lode mineralisation has defined a higher grade core (>10 gram metres) with a strike of 60 metres which provides excellent potential for starter material for mining⁶. The Phase 4 step-out drilling at Carlsen (Section A-A') has extended this higher grade core by a further 15m to the north; results include 18m @ 1.63 g/t from 21m.
- A new discovery of wide, twin zones of mineralisation on the eastern edge of Neta has excellent potential to significantly expand the size of the Neta Prospect. This area is now named the 'Morphy Lode' and is open to the north and south requiring follow-up drilling. Phase 4 results include separate lodes of 27m @ 0.73g/t from 15m and 12m @ 0.53g/t from 1m (Section C).

Given the geological profile of the rest of the Neta Prospect, the Company considers it likely that the Morphy Lode mineralisation ends well prior to the third party tenement boundary to the south.

 Extensions to Neta mineralisation 300 metres to the north to link up with the Staunton area; includes 18m @ 0.43 g/t from 3m. This mineralisation shows up as two discrete lodes of alteration. Drilling so far, has discovered lower grade mineralisation. Follow-up infill drilling will target high-grade, Carlsen-like pods of mineralisation.

The previously named Staunton Prospect is now considered a part of the Neta Prospect, this northerly part of Neta is now called the Staunton Lode.

 Step forward drilling at Neta has delineated the easterly extent of the Carlsen Lode (Section B-B') includes 5m @ 1.8g/t from 1m.

Figure 5: Neta Prospect Section B –new Phase 4 drillhole result for GAC225

2.2 Perseverance Prospect

Discovery of high grade quartz vein mineralisation at the Perseverance Prospect is highly encouraging, this includes 2m @ 11.83g/t from 22m with the up-dip component running at 6.39g/t in another hole (partially stoped).

Two target areas have been defined using drilling, old workings, old reports and mineral alteration; these targets have been named Perseverance West and Perseverance East (Figure 7). There is considerable strike potential of 450m and 375m at these two targets respectively and these areas now require follow-up drilling. Some of the extensive old workings are visible in Figure 7. Transported cover in this area adds to the prospectivity.

Figure 7: Perseverance Prospect Plan – Phase 4 Drill Results

Figure 8: Perseverance Prospect Phase 4 Drill Results – Section D

2.3 Gawler Prospect

Further strong results from infill drilling at the Gawler Prospect include 12m @ 2.42g/t from 12m. Gawler continues to produce significant drill results from each campaign and is a highly prospective area for future work.

3.0 Further Work

With the knowledge gained from the Company's first four drilling programs at Edjudina, there are a number of programs of work that now need to be carried out in order to continue to develop the project, these include:

- Peg a Mining Lease over the Neta Prospect: the excellent drilling results to date at Neta now justify the pegging of a Mining Lease over this prospect with a view to continuing to define and develop this mineralised body
- Deeper infill RC drilling at Neta to better define the geometry of the mineralized body
- Further metallurgical testwork at Neta to test partially oxidized and fresh material
- Follow up RC and aircore drilling at Perseverance; Gawler and parts of Neta
- Mapping of the numerous old workings and further assessing previous soil geochemistry and acquiring further remote sensing data to generate new drill targets
- Aircore drill testing of new targets along the 13km of strike, with the aim of finding Neta style lookalikes and new quartz vein systems
- Aircore drilling under the numerous areas of alluvial cover to discover new mineralized systems not available to the previous artisanal miners

These are the current objectives of Company at the Edjudina Gold Project.

4.0 Summary and Lookahead

The Company is very pleased with the Phase 4 drilling results at Edjudina, especially the discoveries and continuing increase in the defined size of the Neta mineralisation and the potential for the Perseverance and Gawler Prospects.

GIB only acquired an option (now exercised) over the Edjudina Project less than a year ago and has already conducted four major drilling programs, had one highly significant discovery at Neta as well as a number of other discoveries requiring further follow-up and conducted a metallurgical testwork program, the results of which were excellent.

There is a substantial ongoing work program which the Company is pursuing and this will be reported as progress is made.

The Company is in an excellent financial position to execute the ongoing work programs at Edjudina with \$3.03 million cash on hand as of 31 March 2021.

Jim RichardsExecutive ChairmanEnquiries To: Mr Jim Richards +61 (0)408 902 314

References:

¹GIB Acquires Option to Purchase the Historic and High Grade Edjudina Gold Project in the Eastern Goldfields of WA; GIB ASX Release dated 16 July 2020

²Triumph Project Exploration Report; Nexus Minerals Limited dated 15 August 2019

³Major Gold Discovery at Edjudina, WA- 36m at 4.0 g/t from 4m; GIB ASX Announcement dated 8 October 2020

⁴Excellent Metallurgical Recoveries from Bottle Roll Testing of the Neta Lodes Gold Discovery; GIB ASX Announcement dated 26 November 2020

⁵Neta Lodes Prospect Strike doubles; GIB ASX Announcement dated 21 December 2021

⁶Phase 3 Drilling Expands Gold Discovery at Edjudina, WA; GIB ASX Announcement dated 6 April 2021

For a further list of references used in previous releases refer to GIB ASX Announcement dated 25 August 2020

Competent Persons Statement

The information in this report that relates to previously reported exploration results and new exploration results is based on information compiled by Mr. Jim Richards who is a Member of The Australasian Institute of Mining and Metallurgy and a Member of the Australian Institute of Geoscientists. Mr. Richards is a Director of Gibb River Diamonds Limited. Mr. Richards has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Richards consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

Appendix	endix A: Phase 4 Drill Results Table								
Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Prospect	Comment			
GAC225	1	6	5	1.80	Neta	fe alt phyllite; minor qz vn			
GAC225	19	22	3	0.59	Neta	fe alt phyllite			
GAC226	0	12	12	0.30	Neta	6m comps			
GAC226	33	38	6	0.18	Neta	6m comp			
GAC227	18	29	11	0.27	Neta	Includes 6m @ 0.33 g/t (6m comp)			
GAC228	No Sig	gnificar	nt Assay						
GAC229	9	15	6	0.29	Neta	6m comp			
GAC230	0	2	2	1.02	Neta	Calcrete			
GAC230	6	10	4	0.35	Neta	arg phyllite			
GAC231	0	3	3	0.20	Neta	Calcrete			
GAC231	21	39	18	1.63	Neta	ser-fe altn; Hole ends at 39m in 0.74g/t			
GAC232	0	3	3	0.99	Neta	Calcrete			
GAC232	7	15	8	0.56	Neta	qz vn; arg-ser phyllite			
GAC232	25	30	5	0.46	Neta	qz vn; arg-ser phyllite			
GAC232	37	47	10	0.28	Neta	qz vn; fe-arg-ser phyllite			
GAC233	0	7	7	0.45	Neta	Calcrete & qz vn			
GAC233	25	33	8	0.23	Neta	qz vn; fe-arg-ser phyllite			
GAC234	0	3	3	0.66	Neta	Calcrete			
GAC234	33	37	4	0.15	Neta	EOH sample, 4m comp			
GAC235	0	3	3	1.00	Neta	Calcrete			
GAC235	33	42	9	0.26	Neta	2 x comps; EOH comp is mineralised			
GAC236	0	2	2	0.89	Neta	Calcrete			
GAC237	15	42	27	0.73	Neta	comps; EOH comp is 6m @ 1.27 g/t			
GAC238	9	21	12	0.53	Neta	EOH comp is mineralised			
GAC239	0	2	2	0.24	Neta	Calcrete			
GAC240	6	12	6	0.28	Neta	6m comp			
GAC240	30	36	6	0.21	Neta	6m comp			
GAC241	0	18	18	0.25	Neta	6m comps			
GAC241	33	12	Q	0.20	Noto	Includes 6m @ 0.25g/t (EOH comp			
GAC241	24	42	9	0.20	Neta	Sample)			
GAC242	36	11	8	0.10	Neta	includes bill @ 0.15g/t			
GAC243	36	37	1	0.21	Neta	comp samples, nole ends in zm @ 0.20g/t			
GAC244	No Sid	nificar	ı Δssav	0.57	Nela	si priyille			
GAC245	24	36	12	0.14	Neta	6m comps			
GAC247	to GAC	248 - N	lo Significa	ant Assa	v				
GAC249	10	13	3	0.67	Neta	gz vn			
GAC250	30	36	6	0.15	Neta	6m comp			
GAC251	No Sid	gnificar	nt Assay						
GAC252	24	36	12	0.12	Neta	6m comp			
GAC253	24	30	6	0.30	Neta	6m comp			
GAC254	No Significant Assay								

Hole ID	From (m)	To (m)	Interval (m)	Au (a/t)	Prospect	Comment
GAC255	36	42	6	0.16	Neta	EOH sample; 6m comp
		11	14	0.24		
GAC250	0	14	14	0.24	Neta	dz vn, si phyllite; 1m samples
GAC257	24	35		0.54	Neta	Strong to intense te altn; 1m samples
GAC258		30	0 La Cignifia		Neta	6 m comp
GAC259		200 - r			y L	
GAC261	24	31		0.11	Neta	fe phyllite; includes one 2m comp
GAC262		gnilicar		0.11		
GAC263		0		0.11	Neta	6 m comp
GAC264		gnificar	it Assay	0.40		-
GAC265	6	24	18	0.43	Neta	6m comps
GAC265	36	42	6	0.39	Neta	6m comp (EOH comp sample)
GAC266	6	12	6	0.22	Neta	6m comp
GAC266	18	24	6	0.40	Neta	6m comp
GAC267	6	12	6	0.23	Neta	6m comp
GAC268	0	6	6	0.19	Neta	6m comp
GAC269	12	24	12	2.42	Gawler	12m
GAC270	0	6	6	0.54	Gawler	6m comp
GAC271	6	12	6	0.39	Gawler	6m comp
GAC271	28	32	4	0.18	Gawler	4m comp (EOH mineralised sample)
GAC272	to GAC	274 - N	lo Significa	ant Assa	у	
GAC275	0	1	1	0.53	Gawler	Calcrete
GAC276	to GAC	278 - N	lo Significa	ant Assa	y	
GAC279	12	18	6	0.31	Perseverance	6m comp
GAC280	No Sig	gnificar	nt Assay		-	
GAC281	0	6	6	0.17	Perseverance	6m comp
GAC282	7.8	8.0	0.2	6.39	Perseverance	6.2 - 7.8m is a mining void
GAC282	18	24	6	0.13	Perseverance	6m comp
GAC283	22	24	2	11.83	Perseverance	qz vn c ankerite
Includes						
GAC283	22	23	1	20.37	Perseverance	qz vn c ankerite
GAC283	37	38	1	0.34	Perseverance	qz vn; arg phyllite
GAC284	0	6	6	0.18	Perseverance	alluvials and calcrete
GAC284	24	31	7	0.15	Perseverance	Includes 1m @ 0.45g/t
GAC285	to GAC	287 - N	lo Significa	ant Assa	y	· · · · · ·
GAC288	10	12	2	0.23	Ace of Hearts	arg-si-fe phyllite
GAC289	30	33	3	0.17	Ace of Hearts	qz vn; fe phyllite
GAC290	to GAC	293 - N	lo Significa	ant Assa	у	
GAC294	21	23	2	0.57	Ace of Hearts	si-ser phyllite
GAC295	No Sig	gnificar	nt Assay		•	· · ·
GAC296	0	4	4	0.12	Triumph	weathered phyllite? 4m comp

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Prospect	Comment
GAC296	6	9	3	0.18	Triumph	Mining void 6.5 - 7.8m
GAC297	No Sig	gnificar	nt Assay			
GAC298	6	11	5	0.57	Triumph	comp and splits
GAC299	No Sig	gnificar	nt Assay			
GAC300	7	8	1	2.59	Triumph	qz-ankerite vn
GAC301	No Sig	gnificar	nt Assay			
GAC302	14	15	1	0.27	Triumph	minor qz vn
GAC303	17	26	9	0.27	Triumph	Includes 6m @ 0.12g/t (comp)
GAC304	9	11	1	0.69	Triumph	Mining void 9.5 - 10.5m (not sampled)
GAC305	No Sig	gnificar	nt Assay			
GAC306	11	12	1	0.33	Triumph	fe-si-ankerite altn phyllite
GAC306	31	32	1	0.97	Triumph	si-ser-ankerite altn phyllite
GAC307	to GAC	308 - N	lo Significa	ant Assa	у	
GAC309	6	12	6	0.32	Triumph	6m comp
GAC310	to GAC	<u> 313 - N</u>	lo Significa	ant Assa	у	
GAC314	19	21	2	1.44	Belgrave	qz vn; fe altn phyllite
GAC314	23	24	1	0.58	Belgrave	fe altn phyllite
GAC315	No Sig	gnificar	nt Assay			
GAC316	14	19	3.5	0.12	Belgrave	voids at 14.5 - 15.0m and 15.5 - 16.5m
GAC317	12	20	8	0.25	Belgrave	Includes comp; qz vn; arg phyllite
GAC318	No Sig	gnificar	nt Assay			
GAC319	29	42	13	0.23	Glengarry	Includes 6m comp; qz vn; arg ser phyllite
GAC320	42	46	4	0.59	Glengarry	qz vn; arg ser phyllite; hole ends in 0.55g/t
GAC321	50	55	5	0.34	Glengarry	5m comp
GAC322	6	12	6	0.54	Vacuum	6m comp
GAC323	24	30	6	0.10	Vacuum	6m comp
GAC323	to GAC	<u> 329 - N</u>	lo Significa	ant Assa	у	
GAC330	6	8	2	0.29	Vacuum	qz vn; arg ser phyllite
GAC331	to GAC	339 - N	lo Significa	ant Assa	у	
GAC340	0	8	8	0.20	Gawler	qz-ankerite vn; arg ser phyllite
GAC341	16	20	4	0.47	Gawler	qz-ankerite vn; arg ser phyllite
GAC341	22	26	4	2.30	Gawler	4m comp; ser-fe altn phyllite
GAC342	to GAC	343 - N	lo Significa	ant Assa	у	
GAC344	7	8	1	1.87	Gawler	qz vn; arg ser phyllite
GAC345	0	6	6	0.30	Gawler	6m comp
GAC346	8	13	5	1.92	Gawler	Includes 1m @ 7.30g/t from 8m
GAC346	14	20	6	0.30	Gawler	6m comp; ser-fe altn phyllite
GAC347	to GAC	348 - N	lo Significa	ant Assa	у	
GAC349	18	23	5	0.32	Gawler	5m comp
GAC350	26	32	6	0.12	Gawler	6m comp
GAC351	15	22	7	1.04	Gawler	Includes 1m @ 3.95g/t from 17m
GAC352	28	30	2	0.71	Gawler	ser-si altn phyllite

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Prospect	Comment
GAC353	0	12	12	0.48	Gawler	6m comps
GAC353	18	20	1	0.70	Gawler	Mining void 18.5 - 19.5m
GAC354	9	14	5	0.20	Gawler	si phyllite
GAC354	27	42	14.2	0.72	Gawler	Comps; void 33.2 - 34.0m; EOH m/l
GAC355	6	13	7	0.24	Gawler	Includes 6m @ 0.18g/t
GAC356	18	24	6	0.17	Gawler	6m comp
GAC357	20	22	2	0.42	Gawler	arg-ser-fe altn phyllite
GAC357	34	42	8	0.92	Gawler	4m comps; EOH sample m/l
GAC358	0	6	6	0.12	Gawler	6m comp
GAC358	30	34	4	0.80	Gawler	4m comp
GAC359	10	11	1	0.44	Gawler	qz vn
GAC359	36	37	1	0.46	Gawler	qz vn
GAC360	0 No Significant Assay					
GAC361	28	30	2	0.68	Gawler	Mining void 30.0 - 32.0 m

Notes:

Intervals are reported as drilled and are not reported as true widths

comp (composite) samples were taken by representative spearing of the one metre samples

Every one metre sample from holes deemed to have a high prospectivity were split using a riffle splitter and bagged; samples from holes with lower prospectivity were laid directly on the ground and spear sampled as one metre or comp samples as determined by the geologist based upon logging

Results are uncut

Mineralised intervals are reported in this table using the criteria of commercial potential and/or exploration significance

Results are length weighted average one metre assays except where annotated as including or comprising comp samples

All results reported are consecutive for that interval

Repeat and duplicate assays for samples were averaged for that sample

Follow-up assay of mineralised comps will lead to minor changes to this table

ser is sericite; fe is iron; si is silica; qtz is quartz; vn is vein; altn is alteration; m/l is mineralisation; v is very

argillic alteration may be weathering as this is not always ascertainable through visual logging Mining voids have been omitted from the reported interval width which accordingly does not correlate with the From/To value

GAC269

450471

Appendix B: Phase 4 Drill Collar Locations								
Hole ID	mE MGA z51	mN MGA z51	mRL (m)	Plunge (°)	Azi	Total Depth (m)	Survey Method	
GAC225	449348	6707199	377.8	-60	231	42	DGPS	
GAC226	449279	6707163	377.8	-60	231	41	DGPS	
GAC227	449295	6707176	377.6	-60	231	42	DGPS	
GAC228	449311	6707188	377.3	-60	231	42	DGPS	
GAC229	449327	6707201	377.4	-60	231	42	DGPS	
GAC230	449341	6707212	377.6	-60	231	42	DGPS	
GAC231	449357	6707226	377.1	-60	231	39	DGPS	
GAC232	449373	6707238	376.6	-60	231	47	DGPS	
GAC233	449390	6707252	376.0	-60	231	38	DGPS	
GAC234	449445	6707234	375.8	-60	231	37	DGPS	
GAC235	449459	6707244	375.8	-60	231	42	DGPS	
GAC236	449474	6707256	375.6	-60	231	42	DGPS	
GAC237	449492	6707269	375.5	-60	231	42	DGPS	
GAC238	449508	6707281	375.5	-60	231	21	DGPS	
GAC239	449523	6707293	375.6	-60	231	4	DGPS	
GAC240	449076	6707412	375.8	-60	231	42	DGPS	
GAC241	449094	6707426	375.4	-60	231	42	DGPS	
GAC242	449109	6707438	374.9	-60	231	37	DGPS	
GAC243	449124	6707449	374.7	-60	231	44	DGPS	
GAC244	449141	6707462	374.4	-60	231	42	DGPS	
GAC245	449157	6707475	374.1	-60	231	42	DGPS	
GAC246	449130	6707348	376.5	-60	231	42	DGPS	
GAC247	449145	6707359	376.2	-60	231	42	DGPS	
GAC248	449162	6707372	375.8	-60	231	42	DGPS	
GAC249	449178	6707385	375.4	-60	231	42	DGPS	
GAC250	449194	6707397	375.0	-60	231	42	DGPS	
GAC251	449211	6707410	374.7	-60	231	42	DGPS	
GAC252	449228	6707423	374.2	-60	231	42	DGPS	
GAC253	449179	6707286	376.6	-60	231	42	DGPS	
GAC254	449195	6707298	376.5	-60	231	42	DGPS	
GAC255	449211	6707311	376.1	-60	231	42	DGPS	
GAC256	449227	6707323	375.5	-60	231	42	DGPS	
GAC257	449241	6707334	375.1	-60	231	42	DGPS	
GAC258	449257	6707346	374.9	-60	231	42	DGPS	
GAC259	449272	6707358	374.4	-60	231	36	DGPS	
GAC260	449289	6707371	373.9	-60	231	24	DGPS	
GAC261	449230	6707225	377.0	-60	231	42	DGPS	
GAC262	449244	6707236	376.6	-60	231	42	DGPS	
GAC263	449261	6707249	376.2	-60	231	42	DGPS	
GAC264	449277	6707262	376.0	-60	231	42	DGPS	
GAC265	449293	6707274	375.6	-60	231	42	DGPS	
GAC266	449308	6707286	375.4	-60	231	36	DGPS	
GAC267	449324	6707298	375.0	-60	231	31	DGPS	
GAC268	449340	6707310	374.7	-60	231	42	DGPS	

-60

231

36

DGPS

6705787

369.7

Hole ID	mE MGA z51	mN MGA z51	mRL (m)	Plunge (°)	Azi	Total Depth (m)	Survey Method
GAC270	450483	6705800	369.6	-60	231	24	DGPS
GAC271	450500	6705809	369.4	-60	231	32	DGPS
GAC272	450549	6705849	369.5	-60	231	28	DGPS
GAC273	450565	6705862	369.1	-60	231	11	DGPS
GAC274	450582	6705875	369.1	-60	231	21	DGPS
GAC275	450596	6705887	369.0	-60	231	32	DGPS
GAC276	450612	6705899	368.1	-60	231	42	DGPS
GAC277	450627	6705912	367.8	-60	231	35	DGPS
GAC278	452130	6703964	361.4	-60	231	14	GPS
GAC279	452138	6703970	361.4	-60	231	31	GPS
GAC280	452128	6703962	361.4	-60	231	36	GPS
GAC281	452155	6703933	361.5	-60	231	36	GPS
GAC282	452163	6703939	361.5	-60	231	30	GPS
GAC283	452171	6703945	361.3	-60	231	39	GPS
GAC284	452146	6703976	361.3	-60	231	33	GPS
GAC285	452615	6702761	362.0	-60	231	11	GPS
GAC286	452631	6702773	361.9	-60	231	17	GPS
GAC287	452646	6702786	361.8	-60	231	13	GPS
GAC288	452662	6702799	361.7	-60	231	19	GPS
GAC289	452677	6702811	361.5	-60	231	33	GPS
GAC290	452693	6702824	361.5	-60	231	29	GPS
GAC291	452708	6702836	361.4	-60	231	14	GPS
GAC292	452724	6702849	361.2	-60	231	20	GPS
GAC293	452739	6702861	361.1	-60	231	13	GPS
GAC294	452922	6702430	361.2	-60	231	31	GPS
GAC295	452929	6702436	361.1	-60	231	20	GPS
GAC296	453826	6701361	363.7	-60	231	13	GPS
GAC297	453834	6701367	363.4	-60	231	31	GPS
GAC298	453895	6701275	363.6	-60	231	16	GPS
GAC299	453903	6701282	363.5	-60	231	23	GPS
GAC300	453950	6701319	362.6	-60	231	36	GPS
GAC301	453957	6701326	362.4	-60	231	36	GPS
GAC302	453944	6701469	361.3	-60	231	33	GPS
GAC303	453952	6701476	361.1	-60	231	42	GPS
GAC304	453957	6701454	361.5	-60	231	42	GPS
GAC305	453964	6701460	361.2	-60	231	42	GPS
GAC306	454144	6700936	364.0	-60	231	37	GPS
GAC307	454152	6700943	364.0	-60	231	27	GPS
GAC308	454159	6700949	363.8	-60	231	20	GPS
GAC309	454564	6700466	364.2	-60	231	42	GPS
GAC310	454571	6700472	364.0	-60	231	44	GPS
GAC311	455142	6699943	362.4	-60	231	38	GPS
GAC312	455157	6699955	362.2	-60	231	37	GPS
GAC313	455173	6699968	361.9	-60	231	17	GPS
GAC314	455424	6699451	368.0	-60	231	28	GPS
GAC315	455432	6699457	368.0	-60	231	23	GPS

Hole ID	mE MGA z51	mN MGA z51	mRL (m)	Plunge (°)	Azi	Total Depth (m)	Survey Method
GAC316	455435	6699434	368.0	-60	231	20	GPS
GAC317	455455	6699412	368.2	-60	231	24	GPS
GAC318	456981	6697559	359.2	-60	231	30	GPS
GAC319	456989	6697566	359.1	-60	231	42	GPS
GAC320	456997	6697572	359.1	-60	231	46	GPS
GAC321	457289	6697307	361.0	-60	231	60	GPS
GAC322	450734	6705497	369.0	-60	231	42	GPS
GAC323	450750	6705509	368.5	-60	231	42	GPS
GAC324	450765	6705522	368.1	-60	231	11	GPS
GAC325	450781	6705535	367.8	-60	231	16	GPS
GAC326	450796	6705547	367.4	-60	231	32	GPS
GAC327	450812	6705560	367.0	-60	231	22	GPS
GAC328	450827	6705572	366.7	-60	231	36	GPS
GAC329	450843	6705585	366.4	-60	231	42	GPS
GAC330	450983	6705428	366.0	-60	231	22	GPS
GAC331	450998	6705441	365.7	-60	231	19	GPS
GAC332	451014	6705453	365.2	-60	231	6	GPS
GAC333	450428	6705968	371.5	-60	231	26	DGPS
GAC334	450435	6705973	371.5	-60	231	20	DGPS
GAC335	450443	6705980	371.4	-60	231	21	DGPS
GAC336	450452	6705986	371.4	-60	231	18	DGPS
GAC337	450460	6705993	371.3	-60	231	14	DGPS
GAC338	450469	6705999	371.1	-60	231	15	DGPS
GAC339	450482	6705916	371.6	-60	231	18	DGPS
GAC340	450491	6705922	371.8	-60	231	24	DGPS
GAC341	450500	6705929	371.5	-60	231	29	DGPS
GAC342	450510	6705882	370.7	-60	231	23	DGPS
GAC343	450518	6705888	370.8	-60	231	16	DGPS
GAC344	450527	6705895	370.5	-60	231	23	DGPS
GAC345	450516	6705823	369.5	-60	231	42	DGPS
GAC346	450524	6705829	369.5	-60	231	42	DGPS
GAC347	450532	6705835	369.6	-60	231	38	DGPS
GAC348	450506	6705837	369.8	-60	231	42	DGPS
GAC349	450515	6705844	369.9	-60	231	24	DGPS
GAC350	450523	6705851	369.9	-60	231	42	DGPS
GAC351	450462	6705851	370.7	-60	231	22	DGPS
GAC352	450470	6705858	370.7	-60	231	33	DGPS
GAC353	450447	6705870	371.2	-60	231	35	DGPS
GAC354	450454	6705875	371.1	-60	231	42	DGPS
GAC355	450341	6705950	372.1	-60	231	52	DGPS
GAC356	450348	6705956	372.0	-60	231	35	DGPS
GAC357	450356	6705961	371.9	-60	231	42	DGPS
GAC358	450364	6705968	371.9	-60	231	42	DGPS
GAC359	450379	6705967	371.6	-60	231	42	DGPS
GAC360	450387	6705973	371.5	-60	231	42	DGPS
GAC361	450397	6705981	371.4	-60	231	33	DGPS

Appendix C JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Samples from drillholes GAC225 – 233, GAC314 – 317, and GAC345 to 361 were riffle split to 87.5 : 12.5. Riffle splitter cleaned by compressed air between every sample; cyclone cleaned at the end of every rod. Riffle split component was placed in numbered calico bags (approx. 1kg sample per bag), remainder went into a bucket and was placed on the ground. Sample duplicates were created at the direction of the supervising geologist by re-splitting the 87.5% component. Blanks and standards were inserted during drilling by the supervising geologist only for the riffle-split 1m samples. 6m composite samples were collected at the decision of the geologist using a PVC spear and submitted for analysis. These composite samples do not have standards, duplicates, or blanks. 1m samples from drillholes GAC234 – 313 and GAC318 – 344 were collected at the geologist's decision by spear sampling. These 1m samples do not have standards, duplicates, or blanks. Samples were submitted to Jinning (Kalgoorlie) for pulverization to generate a 30g charge for fire assay analysis. Additional 1m splits were collected from the Phase 3 RC drilling program. All of these samples were cyclone split. Cyclone splitter set to 5% for drillholes GRC001 – 004 and 4% for drillholes GRC005 – 022. Cyclone cleaned at the end of every hole. Cyclone split component was placed in numbered calico bags (approx. 3kg sample per bag), remainder went into annotated cyclone bags and placed in rows with the bags folded closed. Cyclone splitter has two openings for the split component. For samples without duplicates were collected from the second port. Blanks and standards were inserted during drilling by the supervising geologist.

• Samples were submitted to Jinning (Kalgoorlie) for pulverization to

Criteria	JORC Code explanation	Commentary
		generate a 30g charge for fire assay analysis.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Prospect Drilling AC Rig 2, 85mm rod string with AC bit; Slimline RC hammer used where ground condition required. Phase 3 RC program: Profile Drilling RC Rig 1, 150mm hammer bit. Two 3m heavy wall rods used behind the hammer to minimise drillhole deviation. All drillholes were surveyed using a north-seeking Axis Champ Gyro SRO. Surveys started at 0m depth and were recorded every 30m and at EOH.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recovery visually assessed on a metre-by-metre basis. Driller directed to use the minimum necessary air pressure to minimise loss of fine component. Selected drillholes were riffle split to ensure a representative sample distribution. No sample bias is known or expected due to preferential loss/gain of fine/coarse material.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill spoil from all holes was quantitatively geologically logged in detail on a metre-by-metre basis to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material 	 Samples from drillholes GAC225 to 233, GAC314 to 317, and GAC345 to 361 were riffle split to 87.5 : 12.5. >>99% of samples were sampled dry. Sample wetness was recorded during logging. Duplicate samples were generated in real time by re-splitting the 87.5% component (AC) or using the second cyclone port (RC). Lab samples were pulverized to -80µm to generate a 30g charge for fire assay analysis. GIB inserted standards, duplicates and blanks into laboratory sample submissions for riffle-split and cyclone-split samples, and these samples were submitted to the lab in separate sample submissions to the spear sampled intervals. This is in addition to internal lab QAQC

Criteria	JORC Code explanation	Commentary
	being sampled.	 procedures. GIB deems sample sizes to be appropriate to the grain size of the material being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were pulverized to -80µm to generate a 30g charge for four acid digest and fire assay (FA/AAS) analysis. This is a total technique. In addition to internal laboratory QAQC procedures, GIB inserted duplicates, standards, and blanks into the cyclone- and riffle-split splits. GIB's standards are from Geostats (Fremantle) and blanks are white brickies sand. Duplicates are described above. GIB analysed both its own QAQC samples and the internal lab QAQC samples and deems acceptable levels of accuracy and precision have been established.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 One laboratory was used. At the time of writing, no samples have been sent to other labs for cross-checking. Significant intersections have been verified by multiple GIB personnel. No twinned holes were used. Drilling, sampling, primary data, and data verification procedures were drawn up prior to fieldwork and are stored on the GIB server. Physical copies of all data are stored in the GIB office. Duplicate/repeat samples were averaged to create the gold value for those samples. No other adjustments were made to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Once drilled, drillhole collars were recorded by hand-held GPS. Datum is MGA94 zone 51. All Phase 3 RC drillholes and all AC drillholes from the Staunton, Neta, and Gawler prospects were surveyed by DGPS. In addition to GPS/DGPS, LiDAR and high-definition drone imagery was used to site drillholes.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drillholes were spaced on nominal 80m x 20m or 10m x 5m grids with local adjustments due to ground conditions. No Mineral Resource or Ore Reserve procedures or classifications have been applied. Sample compositing has been applied only to duplicate/repeat samples.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drillholes were oriented at 60° towards 231. Local foliation is ~75° towards 051. As such these drillholes are oriented approximately perpendicular to foliation. To the best of GIB's current knowledge there is no sampling bias in this drilling program.
Sample security	The measures taken to ensure sample security.	 Samples were collected by GIB personnel in real time during drilling. Calico bags containing composite samples or 1m splits were placed in green cyclone bags and cable tied closed, and collected in a safe location until lab delivery. Samples were delivered and offloaded at the lab by GIB staff, where they were placed in Bulka containers prior to processing. After delivery, samples were kept at the fenced Lab compound. Lab personnel are on site during work hours and all access points are closed and locked overnight.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	An internal review of sampling techniques and data deemed GIB's processes to be compatible with JORC 2012 requirements.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral teneme and lan tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 E31/1179 is held by CoxsRocks (10%) and Nexus Mt Celia Pty Ltd (90%). On 2nd December 2020 GIB <u>announced</u> it had exercised the Option to acquire 100% of the Project. As detailed in GIB's <u>ASX release dated 16th July 2020</u>, GIB acquired an Option to purchase 100% of E31/1179 for \$110k with no private royalties or encumbrances. The Option deal is for six months and can be exercised at any time in that period for the payment of \$330,000 (plus GST), plus 5.5m GIB shares and 5.5m GIB options.
Explora done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 GIB is compiling a database of historic mining and exploration activity. A brief chronology is included below: The main period of mining activity on the Edjudina line of workings (the 'Edjudina Line') occurred between 1897 and 1921. Government Geologist Andrew Gibb Maitland made the first documented description of the Edjudina Line in 1903, which was followed up by reports in 1903 and 1905 by State Government Mining Engineer Alexander Montgomery. These reports described a number of private batteries being run on the Edjudina Line at this time, with some ore also carted to the nearby State Battery at Yarri. A minor revival in mining took place from 1936-1939, which was curtailed by the start of World War 2. In 1974-75 Australian Anglo American Ltd explored the Edjudina line, followed by United Nickel Exploration, Cambrian Exploration and Penzoil of Australia Ltd (1979-81). In 1993 Pancontinental picked up the ground and conducted drilling operations, relinquishing the ground in 1995. Little exploration work was conducted over the next 14 years with the exception of Gutnick Resources who are reported as having completed some wide spaced drilling during this time, however a complete dataset for this work is still being sourced. From 2010 to 2014 CoxsRocks Pty Ltd, a WA based private company, conducted a ground magnetic survey, auger soil geochemistry, and limited aircore drilling. The Edjudina Gold Project has been held by Nexus Mt Celia Pty Ltd from 2014 to present with one limited RC drilling program conducted in that time. GIB completed a 66 hole, 2,756m AC drilling program on <u>15th</u>

Criteria	JORC Code explanation	Commentary
		September 2020, a 6,161m AC drilling program on 29th November 2021, and a 1,971m RC campaign on 11th March 2021.
Geology	Deposit type, geological setting and style of mineralisation.	 Historic reports describe mineralisation as occurring within silicified stromatolites which were mineralized and then boudinaged during diagenesis and regional deformation. In this situation gold is stratabound and almost entirely hosted within the quartz boudins. At this very early stage of exploration GIB believes there may also have been a broader hydrothermal alteration event at Neta in which Au mineralisation is associated with Si-Fe alteration and possibly with porphyry intrusion. Gold mineralisation does not appear to be associated with sulphides.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 See Appendix B (Drill Collar Locations).
Data aggregatio n methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Duplicates and repeats were averaged for samples with multiple assays. No other changes were made to geochemical data.
Relationshi p between mineralisati on widths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 Drillholes were oriented 60° towards 231. Local foliation is ~75° towards 051. As such these drillholes are oriented approximately perpendicular to foliation. Historic reports describe mineralisation as occurring within silicified

Criteria	JORC Code explanation	Commentary
and intercept lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	stromatolites which were mineralised and then boudinaged during diagenesis and regional deformation. In this situation gold is stratabound and almost entirely hosted within the quartz boudins.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 See Maps, Tables and Figures within the body of this announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 n/a – see body of this Announcement for comprehensive reporting of all exploration results.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 While historical drillhole information exists in some areas it is, in aggregate, not possible to report this drilling to JORC 2012 standards. In most cases the only data available to GIB is drillhole collar locations (local grid) and gold analyses.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The Company will undertake additional exploration campaigns at Edjudina.

End